Activated mammalian target of rapamycin is associated with T regulatory cell insufficiency in nasal polyps
نویسندگان
چکیده
BACKGROUND Decreased infiltration of Foxp3+ T regulatory cell (Treg) is considered to be critical for the Th1/Th2 dysregulation of nasal polyps, while the cellular mechanism underlying Foxp3+ Treg insufficiency is currently not well defined. METHODS We attempted to investigate the tissue expression of phosphorylated mammalian target of rapamycin (pmTOR) and infiltration of Foxp3+ Tregs in 28 nasal polyps and 16 controls by histological staining. We also evaluated the effects of blocking the mTOR signaling pathway with rapamycin on T cell phenotype selection and Foxp3+CD4+ Tregs expansion in a tissue culture system. RESULTS Significantly increased infiltration of pmTOR+ inflammatory cells and decreased infiltration of Foxp3+CD4+ Tregs into nasal polyps was observed, with an inverse association. In the tissue culture system, we detected significantly elevated Foxp3 expression and IL-10 production, as well as an increased percentage of Foxp3+ Tregs in nasal polyps after blocking the mTOR signaling pathway with rapamycin. CONCLUSION Here we demonstrate for the first time that the mTOR signaling pathway is associated with Foxp3+ Tregs insufficiency in nasal polyps. Inhibition of the mTOR signaling pathway may be helpful for enhancement of Foxp3+ Treg expansion, as well as modulation of T cell phenotype imbalances in nasal polyps.
منابع مشابه
THE EFFECTS OF 4 WEEKS HIGH INTENSITY INTERVAL TRAINING ON MAMMALIAN RAPAMYCIN TARGET PROTEIN (MTOR) AND STEROL TRANSCRIPTION FACTOR REGULATORY PROTEIN-1 (SREBP1) PROTEINS CONTENT IN DIABETICS OBESE RATS ADIPOSE TISSUE
Background: Obesity and type 2 diabetes can impair the function of important cellular pathways. Activation of the mTOR pathway results in regulation of the SREBP1 protein for metabolism and regulation of adipose tissue. The aim of this study was to investigate the effect of 4 weeks of high intensity interval training on the content of mTOR and SREBP1 in adipose tissue of type 2 diabetic rats. ...
متن کاملRapamycin Inhibits Expansion of Cord Blood Derived NK and T Cell
Background: The mammalian target of rapamycin (mTOR) is important in hematopoiesis. Despite the central role of mTOR in regulating the differentiation of immune cells, the effect of mTOR function on cord blood mononuclear cells is yet to be defined. Objectives: To evaluate the effect of mTOR inhibition, using rapamycin on the proliferation and apoptosis of cord blood mononuclear cells, as well ...
متن کاملP162: Emerging Perspectives on Mtor-Associated Inflammation in Neurodegenerative Diseases
Inflammatory processes have been shown to be involved in development and progression of neurodegenerative diseases. Mammalian target of rapamycin (mTOR) involves in various cellular processes including autophagy, apoptosis and energy metabolism. Recently, studies have been shown an association between mTOR pathway and inflammation, supporting the role of the pathway in the pathogenesis of infla...
متن کاملCharacterization of T-cell subpopulations in patients with chronic rhinosinusitis with nasal polyposis
BACKGROUND There is an ongoing discussion concerning the potential origins of chronic rhinosinusitis with nasal polyposis (CRSwNP). OBJECTIVE The aim of this study was to quantify subpopulations of T cells in peripheral blood and nasal polyps in CRSwNP to examine their influence on the etiology of this disease. METHODS Tissue and blood samples were collected from 11 patients who underwent n...
متن کاملCharacterizing T-cell phenotypes in nasal polyposis in Chinese patients.
BACKGROUND Nasal polyposis has different etiologies in Western and Eastern countries. Furthermore, its pathogenesis is still poorly understood. OBJECTIVE To determine the T-cell phenotypes involved in nasal polyposis in Chinese patients. METHODS Twenty-four Chinese patients with nasal polyps were studied. CD4, CD8, Foxp3, and interleukin (IL) 17 were analyzed by immunohistochemical staining...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Respiratory Research
دوره 10 شماره
صفحات -
تاریخ انتشار 2009